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Abstract
Introduction: Urinary tract infectio iagnostic challenge. Although urine culture remains the gold

ively. This study aimed to develop and validate an interpretable

only structured laboratory dat
Materials and Methods: etrospective cohort of 51,923 adult patients. Seven machine learning
algorithms were trained, wit
exPlanations analysis ¢ to ensure model interpretability. A reduced RF model, using the top 10 predictive

oring systems: one emphasizing model fidelity, one optimizing diagnostic balance,

rated excellent performance (external receiver operating characteristic—area under the
simplified 10-variable model maintained high accuracy (ROC-AUC: 0.947). Key predictors
tkocyte count, nitrite presence, and patient age. The scoring systems offered flexible options
nostic priorities, with the SAFE-Score achieving 95.3% sensitivity.

is intended to support reflex culture prioritization, not reduce overall culture testing. By

ry tract infections (UTIs) are among the most common infections in clinical practice, with an estimated global
idence exceeding 150 million cases annually [1]. They are associated with substantial healthcare costs, frequent
ntibiotic prescriptions, and increased diagnostic burden, particularly in outpatient and emergency settings [2,3].
Accurate diagnosis remains challenging due to nonspecific symptoms and reliance on time-consuming laboratory tests [4].

Urine culture is considered the gold standard for UTI diagnosis. However, its 24—48-hour turnaround often necessitates
empiric antibiotic treatment before microbiological confirmation [5]. This practice contributes to antimicrobial resistance,
now recognized by the World Health Organization as a global health threat [6]. Moreover, up to 60%—70% of urine
cultures yield negative or clinically insignificant results, highlighting potential overuse of testing and therapy [7].
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Rapid dipstick tests, detecting leukocyte esterase and nitrite, provide immediate screening but show variable performance
across populations, with sensitivity and specificity ranging from 68% to 88% and 17% to 98%, respectively [8].

This diagnostic uncertainty has prompted efforts to improve laboratory decision-making, including the use of reflective
testing. Reflective testing, increasingly recognized in modern laboratory medicine, involves laboratory physicians adding
further analyses or interpretative comments after reviewing initial test results to enhance diagnostic reasoning [9]. In
UTIs, this expert-led approach aids accurate interpretation and encourages more judicious use of microbiological testing.
Laboratory physicians thus face the dual challenge of minimizing unnecessary culture requests while ensuring patients
with a high likelihood of positive cultures are correctly identified.

In most laboratory information systems (LIS), detailed symptom information is not captured; only test orders and

preliminary diagnoses, such as International Classification of Diseases (ICD) codes, are typically available. Consequg
the predictive modeling approach in this study relied solely on structured laboratory data. To address this, we devela
standardized, interpretable, and data-driven Laboratory Decision-Support System (LDSS) to optimize urine culture
utilization using routine laboratory parameters. The LDSS is not intended to replace clinical diagnoses but tg
laboratory physicians in prioritizing reflex urine culture testing within laboratory workflows. Diagnostic re

achieving 0.95 or higher in external validation cohorts [11,13].

Recent studies have highlighted the importance of model interpretability.
(SHAP), our LDSS not only ensures transparency but also facilitates clinica
contribution of each variable. Real-world implementations of ML-base

n reductions in unnecessary
putcomes [12,14].

external validation, raising concerns about generalizability’ai i s and diverse patient populations [13,15].

1 tterns may limit reproducibility and scalability.
Unlike existing tools, the proposed LDSS provides t systems tailored to different clinical priorities,
ranging from high-sensitivity triage to specificity-fol 1 -making. This flexibility promotes collaboration among
biochemists, microbiologists, and clinicians while reduei 1 ostic waste by minimizing unnecessary urine culture
requests.

e ally yalidate a robust, interpretable ML-based LDSS to predict urine
ected standardizing reflective testing practices, the LDSS supports
izes resource utilization, and ultimately contributes to rational antibiotic

The aim of this study was to develo
culture outcomes in patients with
interdisciplinary decision-maki

prescribing across healthca ttings.

Materials and Me
Study Populatio

m uTine cultures were clinically indicated. Consequently, the dataset reflects real-world test-ordering practices rather
t biased subset of confirmed infections.

Patients were excluded if they had incomplete test results, missing sub-parameters, non-bacterial pathogens in their urine
culture, delays exceeding one hour between urine sample collection and laboratory registration, delays exceeding 30
minutes for hemogram samples between phlebotomy and laboratory receipt, or a history of antibiotic treatment prior to
testing.




CBC analyses were performed using UniCell DxH 800 analyzers (Beckman Coulter, Miami, FL, USA) from 2014 to 2020
and XN-2000 systems (Sysmex Corporation, Kobe, Japan) from 2020 onward. Urinalysis tests were conducted using fully
automated analyzers across three periods: H-800 and FUS-200 systems (Dirui Industrial Co., Changchun, China) from
2014 to 2018; BT Uricell 1280-1600 (Bilimsel Products, Izmir, Tiirkiye) from 2018 to 2021; and U2610-U1600 (Zybio
Corporation, Chongqing, China) from 2021 onward.

Midstream urine samples were collected in sterile containers simultaneously with urinalysis and processed according to
standard microbiological procedures. Samples without detectable bacterial growth after 24 hours were incubated for an
additional 48 hours; if no growth was observed, the result was reported as “no growth.”

Reagents and calibrators for urinalysis were obtained from authorized manufacturers and were certified and registe
products. Quality control materials were sourced from Bio-Rad (California, USA). All results were reviewed and valid
for accuracy and reliability by both a clinical biochemistry specialist and a clinical microbiology specialist.

Study Design
Patient identifiers were anonymized, and a dataset comprising age, sex, hemogram, urinalysis, and u

test orders are typically accompanied by preliminary diagnoses or ICD codes from the reque
patient symptoms are not captured. Accordingly, the predictive model in this study was de
diagnosis of UTI.
After applying exclusion criteria, the final dataset included 49,720 patients, with an externaliwalidatign’ cohort of 2,203

Following data cleaning, the main dataset was divided into training, internal t@&
60:20:20 stratified sampling strategy based on the binary target variable, en
ards for Reporting Diagnostic
Accuracy (STARD) guidelines.

Data Preprocessing and Training of ML Algorithms
Patient data were initially exported from the LIS into Mi emo@ram values and flow cytometry parameters
from urinalysis were used directly due to device standardi . uanditative dipstick results—reported by
urinalysis analyzers as categorical values (e.g., “+,” “++,” e converted into numerical equivalents (e.g.,
“++” mapped to 2; “trace” standardized to 0.5) to ens nsistency. Variables describing urine color and
appearance were also recategorized by grouping si e.g., light yellow to dark red; clear to very cloudy)
to standardize the dataset.

(label = 0).

The 10,000 CFU/mL threshol
guidelines, which acknowle
or catheterized patients. Nel.
symptomatic UTIs, supponti

dards. In urinary cultures, the presence of Candida species typically reflects colonization or
an true infection, even at colony counts exceeding 10*~10° CFU/mL, unless accompanied by
toms [19]. Classifying yeast as negative prevented false-positive propagation in the LDSS and

1a, its terminology guided our categorization strategy. This interpretation reflects real-world laboratory
ows, ensuring that the LDSS mirrors standardized reporting logic and remains generalizable across institutions

The cleaned dataset was transferred to Python for ML analysis. To enhance model robustness and address class
imbalance, a stratified data partitioning scheme was applied, allocating 60% of samples to training and 20% each to
internal and external testing. The dataset exhibited natural imbalance, with 22.4% culture-positive and 77.6% culture-
negative samples. To mitigate majority-class bias, feature standardization and rebalancing strategies
(class_weight="balanced') were applied uniformly across all classifiers.



As a preliminary check, a baseline Logistic Regression model was trained and evaluated across all data splits. ROC-AUC
scores (=0.74, 0.73, 0.73 for training, internal, and external sets, respectively) and F1 scores (0.55, 0.54, 0.54)
demonstrated consistent generalization without evidence of overfitting or imbalance-driven inflation. The close alignment
of these baseline metrics confirmed that stratified sampling preserved class proportions across all subsets (=22.4% positive
vs. 77.6% negative), ensuring reliable model development.

ML Model Selection and Development

The results confirmed that the methodological setup—including stratified sampling and proportional weighting—
effectively mitigated class imbalance and provided a reliable foundation for model development. Logistic Regression was
used not as a primary model, but as a diagnostic tool to verify dataset integrity and the fairness of the training process
[21].

Model development was performed in Python 3.13.1 using widely adopted libraries and workflows. Seven ML algorith
were evaluated for their suitability with the dataset and their potential effectiveness in predicting urine culture outoc

RF, Extreme Gradient Boosting (XGBoost), LightGBM, CatBoost, Logistic Regression (LR), Artificial Neural Network
(ANN), and K-Nearest Neighbors (KNN).

Variables included in the analysis:

° Demographic: Age, sex

(] Hemogram: White blood cell, neutrophil, lymphocyte, monocyte, eosinophil, basophil, he bin (

(] Urine Dipstick: Leukocyte esterase, nitrite, glucose, protein, pH, erythrocyte, bilixudi 0 ogen, ketone

. Other Urinalysis: Urine color, urine density, appearance

° Flow Cytometry: Bacteria count, cylinder, yeast, urine leukocyte count

Data preprocessing, model training, evaluation, and visualization were condugcted using ope hon libraries:

(] Data Processing and Analysis: pandas (v2.2.2), numpy (v2.0.2), 6ptuna (v4.3.0)

(] ML Model Development: scikit-learn (v1.6.1), xgboost (v2.1.4), lightgbta (v4.5.0), catboagta(v1.2.8), tensorflow
(v2.10), keras (v2.10), torch (v2.6.0 + cul24)

(] Model Evaluation and Visualization: matplotlib (v3.10), seaba ipy.stats (v1.9), sklearn.metrics

(v1.2), SHAP (v0.47)

Detailed hyperparameter optimization procedures, including sear and parameter configurations for each
model, are provided in the Supplementary Material (Tab 5 retrained using the optimal
hyperparameters identified during tuning. Final model e n F1 and ROC-AUC scores derived from the
internal test set.

Performance Evaluation
Performance evaluation was conducted using stand sed data science libraries. The modeling process was

rparameter tuning, and multiple performance metrics.

Positive Likelihoo
F1-Score

valuation approach balances predictive performance with explainability, providing a robust
ng urine culture outcomes based solely on laboratory and demographic data.

intained performance comparable to the full model, supporting its suitability for practical implementation.
d of the default probability threshold of 0.5, an optimized threshold based on Youden’s J statistic was applied to
i ove sensitivity and minimize missed infections. Each selected feature was then converted into a binary indicator
ing individual cut-points derived from ROC analysis, enabling construction of a straightforward cumulative score.

Feature-importance values were normalized to derive clinically interpretable weights. Highly influential predictors
received slightly higher weights, while moderately informative features were scaled conservatively to balance performance
with interpretability. The final scoring system was recalibrated using internal data and externally evaluated,
demonstrating preserved sensitivity and specificity. This streamlined, transparent design ensures that the LDSS is
suitable for routine use within laboratory workflows.



Validation of the LDSS

An independent validation dataset, obtained from an affiliated hospital within the same healthcare network, was used to
assess the generalizability and robustness of the LDSS through temporal validation. This temporally separated
retrospective dataset was entirely independent of all model development phases, including training, feature selection, and
score construction.

Performance of the reduced 10-variable RF model and the three derived scoring systems was evaluated within this
separate clinical environment. Standard classification metrics were computed and compared with those from the original
external test set, providing insight into the system’s real-world applicability.

The validation strategy adheres to recommendations from the International Federation of Clinical Chemistry and
Laboratory Medicine for evaluating diagnostic tools using independent datasets. This approach strengthens the clini
credibility of the LDSS by demonstrating reproducibility across diverse healthcare settings.

Statistical Analysis
Descriptive statistics are presented as means + standard deviations (SD) for continuous variables and as fT,
percentages for categorical variables. Comparative analyses between the development and validation datas
conducted using:

Student’s t-test for normally distributed continuous variables
Welch’s t-test for continuous variables with unequal variances or sample sizes

Pearson’s Chi-square test for categorical variables

Z-tests for proportions and McNemar’s test for paired categorical outcomes, particu
performance metrics across datasets

erences in
diverse clinical

These statistical comparisons were used to evaluate diagnostic consistency andgi ify significant @
classification outcomes, providing insight into the reproducibility and robus, DSS across
settings.

All p-values were two-sided, with statistical significance defined a
and its associated statistical packages.

were conducted using Python 3.13

Results

Dataset Description and Data Preprocessing

The analytical cohort comprised 51,923 patient encou 1 ing 49,720 records from the main institutional database
and 2,203 from an affiliated tertiary center. The valj nriched with inpatients from high-acuity units,
such as Palliative Care and Gynecologic Oncology, was sp@€ifically used to assess the external validity of the LDSS.
The validation cohort demonstrated significantly hi ss all demographic strata (total: 43.92 vs. 38.28 years;
males: 48.04 vs. 39.69; females: 41.23 vs. 3 matologic comparisons revealed statistically significant
reductions in lymphocyte and eosinophil ompanied by a modest but significant increase in HGB levels (p <
0.05).

gender distribution (all p > 03
vs. 18.3%), this differencesi

hat while the two datasets are broadly comparable, the validation cohort exhibits distinct
pliles, likely due to its inpatient composition. These differences should be considered when
ce in more complex clinical settings. Detailed summary statistics and p-values for each
Table 1.

uning

ance Metrics of ML Models
performance of seven ML models was evaluated using both internal and external test datasets. Ensemble-based
ds—RF, CatBoost, and XGBoost—consistently demonstrated high accuracy (>0.929) and F1 scores (>0.83) across
h datasets, highlighting their robustness for clinical prediction tasks.
n the external test set, RF outperformed all other models, achieving the highest ROC-AUC (0.956) and PR-AUC (0.907),
indicating superior discrimination and precision-recall trade-off. CatBoost achieved the highest sensitivity (0.771) while
maintaining balanced performance across other metrics.

KNN demonstrated exceptional specificity (0.988) and PPV (0.945) in the external set, making it particularly effective for
ruling in cases. Conversely, LR, while computationally efficient, showed the lowest sensitivity and F1 scores, limiting its
diagnostic utility.



Performance metrics from the external dataset closely mirrored those of the internal test set for all models, reinforcing
their generalizability and stability. Comprehensive statistics for both datasets are provided in Table 2 and Figure 2.
Among all evaluated algorithms, RF exhibited the most consistent and highest overall performance, with an internal
ROC-AUC of 0.952 [95% CI: 0.948-0.956] and an external ROC-AUC of 0.956 [95% CI: 0.952-0.960], along with strong PR
characteristics.

Given its superior accuracy, consistent generalizability, and interpretability, RF was selected as the core algorithm for
integration into the LDSS. SHAP analysis was then performed on the final model to provide insight into the individual
contribution of each feature to the predicted outcomes.

SHAP Analysis of the Optimal RF Model
Model interpretability was improved using SHAP, which quantifies the contribution of each feature to the predictions
generated by the final RF model. As shown in Figure 3, the most influential features were

. Bacteria_Count (SHAP value: 0.061)

(] Urine_Leu_Count (0.055)

o Nitrite (0.052)

° Age and Leukocyte Esterase (both 0.041)

These features correspond with well-established clinical markers of UTI, supporting the biological pl
model.

Features with moderate importance included HGB, Gender, and Lymphocyte Count (LYM), wi ] es ranging
from 0.017 to 0.030. Features such as Bilirubin, Urobilinogen, and Ketone contributed mini 1
below 0.003.

Overall, the feature ranking confirms that the model primarily relies on clini
transparency and supporting its integration into laboratory decision-making.

Performance Metrics of the LDSS
A simplified RF model, built using the top 10 SHAP-derived features, main

feature model (ROC-AUC: 0.952 vs. 0.947; PR-AUC: 0.897 vs. 0.890), su t ability for clinical implementation
(Table 2). Based on these variables, three complementary scoring s, ped to address distinct operational
needs within laboratory workflows (Table 3):

. Model-Prioritized Score: Retains the behavi ine-learning model by assigning weights

directly from normalized SHAP values. This version is ide
remaining faithful to the underlying algorithm.

king high overall discrimination while

. Dual-Optimization Score: Adjusts feat
metrics across both test datasets (Table 4, Figure 4)
missed infections and unnecessary cultures.

balance sensitivity and specificity, as reflected in stable
intended for laboratories aiming to minimize both

4).

ecessary antibiotic use has become increasingly critical. Recent studies demonstrate that ML
tic accuracy by integrating clinical symptoms, medical history, and urinary biomarkers, rather
culture results [22].

iven decision-support systems (AI-DSS) can reduce diagnostic workload in hospitals, although their
validation remains limited [15]. Urinary biomarkers, such as nitrite and leukocyte esterase, exhibit high

for UTI diagnosis, yet their integration into ML models is essential to mitigate false-positive results [23]. Al-
isted methodologies are expected to be particularly beneficial for early detection of recurrent UTIs and multidrug-
ant pathogens, potentially improving patient outcomes and guiding more precise therapeutic interventions [23,24].
this study, we evaluated the performance of multiple ML models in predicting urine culture outcomes and assessed
eir clinical applicability using explainable AI (XAI) techniques. Validation on a demographically and clinically distinct
inpatient cohort further demonstrated the robustness and real-world adaptability of the LDSS. The incorporation of XAI
enhanced interpretability, providing insight into the decision-making process and supporting potential integration in
complex healthcare settings.

The LDSS was developed using all physician-ordered urine culture requests, including both culture-positive and culture-
negative cases. Consequently, the dataset reflects the complete real-world distribution of suspected UTIs encountered in
laboratory practice, enabling the model to learn discriminative patterns for both infection and non-infection samples.



Importantly, the LDSS functions solely as a laboratory-level decision-support tool rather than a diagnostic system. Its
predictions are limited to variables available in the LIS and are intended to complement, not replace, physicians’
diagnostic judgment.

Gender and Age-Related UTI Incidence

In our study, UTIs were significantly more common in female patients than in males. This finding aligns with existing
literature and reinforces the well-established notion that women are more susceptible to UTIs due to urogenital anatomy,
hormonal fluctuations, and lifestyle factors. Schmiemann et al. reported that UTI incidence in women is four to five times
higher than in men [1]. Similarly, Hooton et al. identified a higher risk in women attributable to a shorter urethra and
variability in periurethral microbial flora [25]. Additional risk factors include age, postmenopausal hormonal changes, and
a history of recurrent infections.

Age also emerged as a critical determinant, with UTI incidence progressively increasing—particularly among wome:
65 years and older. While Foxman et al. reported peak incidence in women aged 15-29, with a secondary rise in

postmenopausal groups [26], and Moller et al. linked estrogen depletion after age 50 to heightened susceptibility [11]
study identified older age (>65 years) as an independent risk factor for positive urine culture in the LDSS mg 1
finding underscores the importance of incorporating age as a predictive variable and reflects the growing b
in elderly populations.

Performance of ML Models

patient populations [5,28]. In studies by Dhanda G et al. and Taylor RA et a
demonstrated superior discriminatory capacity, achieving AUC-ROC

The KNN model achieved precision metrics comparable to prior st
constrain clinical adoption [7]. Conversely, LR, while highly intert
consistent with Ramgopal et al., where the model tended
models, though commonly employed in UTI prediction studie
slightly below previously reported benchmarks [2].

Overall, these results reinforce the value of ensemb L metRods in the context of a LDSS for UTI prediction. They offer
high predictive accuracy and consistent performanc oss ingeé¥nal and external validation cohorts, supporting their

Several studies have investigated maching-l sed urine culture prediction, varying in complexity and
generalizability. Seheult et al. devel i e algorithm across multiple institutions to identify urinalysis
predictors of culture positivity, re values of approximately 0.78-0.79; however, their study lacked
external validation and interp assessment. By comparison, our model achieved higher discrimination during
development (ROC-AUC = . r cross-validation. Following conversion into a simplified score-based LDSS,

real-world performance rema
trade-off between modg ' and clinical interpretability, as the LDSS was designed for practical integration into

ble classifiers, including RF and XGBoost, to real-world laboratory data, achieving
pwever, their models combined clinical and laboratory parameters and lacked transparent
~In contrast, our LDSS relied solely on structured laboratory data, achieved comparable

2), and preserved interpretability and reproducibility through rule-based score calibration via the
ual-Optimization systems [32].

ectively, previous studies demonstrated the feasibility of ML-assisted urine culture prediction but often emphasized
ithmic performance over interpretability and clinical applicability. The present study addresses this gap by

ablishing a transparent, externally validated, and operational LDSS framework that maintains clinically acceptable
erformance while remaining fully interpretable and implementable within routine laboratory workflows.

Explainability and Feature Importance

SHAP-based feature-importance analysis in our study revealed a variable ranking that aligns with and extends existing
literature. The most influential predictors were bacterial count, urine leukocyte count, nitrite, age, and leukocyte esterase.
These findings are consistent with the meta-analysis by Devillé et al., which reported that combining nitrite and leukocyte
esterase yielded a sensitivity of 88% and specificity of 98% for UTI diagnosis [8]. Similarly, Lachs et al. demonstrated that
integrating these parameters with clinical symptoms significantly improves diagnostic accuracy [34].



Notably, our model also identified HGB levels, sex, and lymphocyte counts as important features with relatively high
SHAP values, suggesting sensitivity to broader systemic or demographic factors that may influence infection risk. This
aligns with Zhao Q et al., who reported age and sex among the top predictors in a SHAP-based post-urostomy UTI risk
model [35], and Wang H et al., who found that systemic inflammatory markers and age were highly important in
predicting post-surgical UTIs [36].

The predominance of microscopic urinalysis variables—particularly bacterial and leukocyte counts—over clinical or
demographic features underscores the model’s responsiveness to diagnostic biomarkers. This differentiates our approach
from models such as Lee H et al., which focused on predicting antimicrobial resistance patterns but also leveraged SHAP
analysis for interpretability [37].

Recent literature highlights the limitations of reflexive urine culture testing in the absence of clinical context. Munigala
al. and others have shown that reflex algorithms triggered by markers like leukocyte esterase or nitrite may reduce
volume but compromise diagnostic precision when symptom data are unavailable [38]. Fakih M et al. similarly argue
urinalysis alone is insufficient for accurate UTI diagnosis in asymptomatic patients, risking overdiagnosis and
overtreatment [39].

constraints Rather than functioning as an autonomous decision-maker or reﬂex trigger the syste axefléctive

Th1s reflective framework promotes standardized testing and interdisciplinary consultation.
outputs can facilitate dialogue between laboratory and clinical teams, helping reconcile te
safety. Such an approach advances rational microbiological testing and provides a scalab ician-laboratory
collaboration [40].

The LDSS demonstrated robust predictive performance across internal and exte
integration into routine laboratory workflows and reflective testing processesgl
culture testing but to prioritize it based on evidence-driven probability, mai, aonostic stewardship.

To enhance accessibility for readers from diverse clinical and laboratory back 1s study emphasizes the
translational relevance of the LDSS over computational complexit explai 1gn—supported by SHAP analysis
and simplified scoring systems—enables non-technical users to i utp ts transparently While technical details

LDSS
Although symptom data were unavailable in the lab: et, the LDSS was intentionally designed to function
within the routine workflow of laboratory \\4 equests are frequently submitted without accompanying

clinical narratives. By aligning the model 1d Taboratory constraints, the LDSS remains applicable and

scalable across diverse clinical settin

ize u y complexity, feature selection was applied to reduce the number of
istently demonstrated that parsimonious models are better suited for clinical
implementation, as they ar ret and maintain, while preserving acceptable predictive performance [41,42].
Accordingly, subsequent mo was restricted to ten key parameters that did not result in a statistically or
chnlcally meaningful de 1 ormance. This strategy ensured an optimal balance between model simplicity and

To improve interpretability and
input variables. Prior studies

imilarly developed LDSS frameworks based on urine culture data, including those

nda et al., Del Ben et al., and Flores et al. [2,28,30,43]. Among these, Del Ben et al.

ed approach, whereas the remaining studies selected RF as the primary algorithm [43]. The
ries and colleagues demonstrated performance metrics comparable to those observed in the
—ROC values ranging from 0.70 to 0.80. Although their model achieved a higher PPV, its NPV
our model, highlighting differences in clinical trade-offs between false-positive and false-negative

, Dhanda et al. and Flores et al. implemented scoring systems that stratified patients into high- and low-risk
approach that is conceptually aligned with the strategy adopted in the present study. Across key performance
rics, the predictive accuracy of their models was broadly comparable to that of our system [2,30].

at distinguishes our LDSS is the integration of three distinct predictive models within a unified decision-making
amework. To our knowledge, this is the first study to report the implementation of such a multi-model structure for UTI
prediction. This design enables clinicians and laboratory physicians to select among alternative strategies according to
specific clinical priorities, such as maximizing case detection or minimizing unnecessary diagnostic testing.

Although the SAFE-Score achieved excellent sensitivity, its specificity was limited (approximately 20%), a trade-off that
may raise concerns regarding potential overtesting. Importantly, the LDSS was intentionally designed to accommodate
this limitation by offering three complementary scoring strategies, each reflecting a distinct clinical philosophy. These
include prioritization of patient safety (SAFE-Score), balanced diagnostic performance (Dual Optimization), and strict



adherence to model-derived predictions (Model-Prioritized). Rather than enforcing a one-size-fits-all solution, the LDSS
functions as a flexible framework that facilitates consensus-based decision-making, allowing institutions to align model
selection with local clinical expectations and operational priorities.

Crucially, the proposed system is not static. By continuously incorporating real-world data—particularly cases in which
algorithmic recommendations are compared with expert laboratory physician judgments—the LDSS can be iteratively
retrained and refined. As additional large-scale datasets are accumulated over time, improvements in specificity and
overall diagnostic balance are anticipated, reflecting the inherent capacity of ML models to evolve with expanding data
inputs. In this respect, the LDSS serves not only as an immediate decision-support tool but also as a scalable platform for
continuous learning and performance optimization.

Within the Turkish healthcare context, reflective testing has not yet been systematically implemented. Nevertheless, th
LDSS offers a structured and standardized framework that may facilitate its adoption, reduce inappropriate urine ¢
requests, and support antimicrobial stewardship initiatives. Moreover, the Ministry of Health of Tiirkiye has recentl
introduced a “Rational Laboratory Utilization” directive that explicitly promotes reflex and reflective testing practices

s across diverse
comorbidities, and

healthcare systems are planned, incorporating structured clinical variables su
medication history to further enhance the model’s generalizability and clinica

Study Limitations
Although this study leveraged a large dataset and included external vali limitations should be

medication history, or clinical notes—factors know
routine clinical care, integration of such informatio
diagnostic tests based on patient history, clinical pr

the responsibility of the treating physician, who orders
d prevailing guidelines. In contrast, laboratory

physicians are tasked with processing subm ording to standardized pre-analytical and analytical
protocols. Although pre-preanalytical fact ds appropriate test selection, are important, these data are rarely
available to LIS in a structured, anal r . sequently, most LIS environments contain only coded test orders

ort tool that standardizes reflective testing and promotes communication
between laboratory and clini dingly, the system functions as a laboratory-based reflex testing
prioritization tool rathe a iagnostic or therapeutic decision-making platform.

Fourth, despite rob nce 1n both internal and external test sets, the relatively small independent validation
cohort—enrlched for hi

th, although the conventional definition of significant bacteriuria is >10° CFU/mL, this
threshold based on emerging clinical evidence and institutional practice. Future
aluate the effects of alternative thresholds on model calibration and performance across different

lementation studies are therefore essential to evaluate user engagement, potential alert fatigue, and cost-effectiveness
P to widespread clinical deployment.

onclusion
We developed and preliminarily validated an interpretable, multi-model LDSS designed to improve the efficiency of urine
culture utilization. By integrating ensemble machine-learning approaches with SHAP-based interpretability, the system
demonstrated strong discriminatory performance while offering flexible scoring strategies that prioritize sensitivity,
specificity, or an optimized balance between the two. The LDSS has the potential to reduce unnecessary urine cultures,
support antimicrobial stewardship efforts, and promote standardized, evidence-based laboratory decision-making.
Future work will focus on prospective, real-world implementation across diverse clinical settings. Planned enhancements
include integration with electronic health record—derived clinical data, local calibration of decision thresholds, and



systematic evaluation of clinical impact, user adoption, and cost-effectiveness. These steps are critical for translating this
early-stage model into a scalable and clinically actionable decision-support tool.

Figure 1. STARD flow diagram of study participants and urine culture testing.
Figure 2. Receiver operating characteristic (ROC) and precision-recall (PR) curves illustrating the predictive performance

of ML models.

Figure 3. SHAP summary plot showing variable importance in the RF model.
Figure 4. LDSS workflow illustrating selection criteria based on diagnostic accuracy and operational priorities.

Table 1. Baseline characteristics of the study population, including demographic, clinical

and laboratory variables.

Characteristics | Unit Main Training Internal External Validation p-value ®
a Dataset Set Test Set Test Set Set
(m=49,720) | n=29,832) | 1=9,944) | (n=9,944) | (n=2,203)
Mean+SD | Mean+SD | Mean+SD | Mean+SD | Mean = SD
Age 38.28 + 38.07 + 38.89 + 38.29 + 43.92 +
26.85 26.81 26.99 26.83 28.53
Male Voars 39.69 + 39.33 + 40.09 + 40.37 + 48.04 +
28.20 28.12 28.39 28.26 28.38
Female v 37.41 + 37.29 + 38.17 + 37.03 % 41.23 +
ears 25.96 25.95 26.07 25.85 28.33
Gender
Male n %) 18,871 11,358 3,766 3,747
° (38.0%) (38.1%) (37.9%) (37.7%)
Female n %) 30,849 18,474 6,178 6)197
° (62.0%) (61.9%) (62.1%) 3
9
WBC *10 847+463 | 85+491 | 84+3.86
cells/Li
3 9
Neutrophil *10 51434 511+3.34 | 5.05+3.13 BABEB14 1 o4y
cells/Li
9
Lymphocyte *10 245+2.82 | 247+327 |24 236£126 1 405
cells/Li
9
Monaocyte *10 0.68+0.85 | 0.68+1.0 b7+037 | 067029 1 (168
cells/Li
— >
Eosinophil *10 0.240.25 0.2+0.2 02:024 | 01901 405
cells/Li
3 9
Basophil *10 0.04+0.06 | 0.04 0.04007 | 004003 1 509
cells/Li
HGB 27+ 12.27 + 12.56 + 1.98
g/dL, 12.26 £ 1.91 Voo Lo <0.05
Bacteria Count
: 33.93 + 33.24 + 41.7 +
(urine) /HPF 124.4 120.89 118.07 157.49 <0.05
Leucocyte
: 52.32 + 53.53 + 64.28 +
Count (urine) | /HPF 288.38 279.64 293.02 324.2 0.124
Yeast /HPF ?'70041*5 1954361 | 22+37.23 | 21355543 | ey
Mucus | 11.34+ 10.97 = 11.62 = 2214 + <0.05
30.69 28.36 33.03 56.43
Cylinder 00 <0.05
0.04+0.22 | 0.04+0.23 | 0.05+0.23
Density 101698+ | 1017.02+ | 101695+ | 10169+ | 101586% | <0.05
8.17 8.14 8.23 8.22 7.19
5.9+ 0.81 5.91 + 0.82 5.89+0.81 | 59+0.81 6.05 + 0.52 <0.05
<0.05
11,156 6,694 2,231 2,231 403 (18.3%) | | 100
(22.4%) (22.4%) (22.4%) (22.4%) :
38,564 23,138 7,713 7,713 1,800 L 000
(77.6%) (77.6%) (77.6%) (77.6%) (81.7%) :

ategorical variables were not included in this table.
Continuous variables were compared using Welch’s t-test, and categorical variables were analyzed with Pearson’s chi-

square test. A p-value < 0.05 was considered statistically significant.

Table 2. Classification performance metrics of the ML models, including accuracy, sensitivity, specificity, and AUC.

Model

Sensitivity

Specificity

PPV

NPV

Accuracy

F1 Score

ROC-AUC

PR-AUC

Internal Test
Set




RF 0.758 0.985 0.934 0.934
(0.741- (0.982— (0.923— (0.929—
0.776) 0.987) 0.946) 0.939)
XGBoost 0.768 0.976 0.902 0.936
(0.751— (0.973— (0.889— (0.930—
0.784) 0.979) 0.916) 0.941)
LightGBM 0.681 0.972 0.876 0.913
(0.664— (0.968— (0.862— (0.907-
0.699) 0.976) 0.894) 0.919)
CatBoost 0.764 0.980 0.918 0.935
(0.747— (0.977- (0.907— (0.930—
0.784) 0.983) 0.931) 0.940)
Logistic 0.350 0.969 0.765 0.838
Regression (0.330— (0.965— (0.738— (0.830—
0.370) 0.973) 0.791) 0.846)
ANN (MLP) 0.561 0.943 0.738 0.881
(0.541— (0.937— (0.717- (0.875—
0.582) 0.947) 0.758) 0.888)
KNN 0.723 0.984 0.929 0.925
(0.705— (0.981—- (0.917- (0.919-
0.743) 0.987) 0.940) 0.930)
RF (with top 0.769 0.981 0.924 0.936
10 variables) | (0.761— (0.979— (0.919- (0.931-
* 0.777) 0.984) 0.930) 0.941)
External
Test Set
RF 0.76 0.987 0.943 0.935
(0.744— (0.984— (0.932—
0.778) 0.989) 0.953)
XGBoost 0.767 0.980 0.917
(0.748— (0.977- (0.906— (0.824— (0.927— (0.871-
0.784) 0.983) 0.930) 0.848) 0.937) 0.883)
LightGBM 0.686 0.976 0.776 0.919 0.840
(0.666— (0.972— (0.762— (0.914— (0.833—
0.704) 0.979) 0.789) 0.924) 0.847)
CatBoost 0.771 0.982 0.840 0.929 0.875
(0.754— (0.979— (0.929— (0.827— (0.924— (0.868—
0.790) 0.985) 0.939) 0.852) 0.934) 0.882)
Logistic 0.339 0.827 0.467 0.793 0.597
Regression (0.321— (0.819- (0.445— (0.785— (0.587—
0.358) 0.842) 0.834) 0.487) 0.801) 0.607)
ANN (MLP) 0.881 0.854 0.634 0.846 0.707
(0.874— (0.847— (0.618— (0.839— (0.698—
0.888) 0.861) 0.651) 0.853) 0.716)
KNN 0.924 0.927 0.817 0.947 0.905
(0.918- (0.923— (0.803— (0.943— (0.899—
0.929) 0.933) 0.830) 0.951) 0.911)
*Reduced model ingludi e top 10 predictors selected by SHAP analysis: bacterial count in urine, urinary
leukocyte count, uri itritg'fest, patient age, leukocyte esterase activity in urine, HGB concentration, gender,
lymphocyte 1

Table 3A.
NPV,

Normalized | Model- Dual- SAFE-Score Scientific
Binarization | SHAP Prioritized Optimization | System Justification
Value Score Score? (Sensitive
System ! Assessment for
Exclusion)3
>20 0.175 0.20 0.32 0.89 Major diagnostic
marker for infection;
emphasized
clinically.
Urine >25 0.157 0.18 0.22 0.05 Strongly correlates
Leukocyte with infection;
Count slightly boosted for
sensitivity.
Nitrite =1 0.147 0.17 0.15 0.77 Positive nitrite is a
direct indicator of
gram-negative




bacterial activity.

Age >65 0.118 0.15 0.23 0.42 Increased risk in
elderly population
(>65 years).

Leucocyte >0 0.116 0.14 0.13 0.82 Biochemical indicator

Esterase of leukocytes;
moderate importance.

HGB <12 0.085 0.10 0.12 0.71 Low HGB levels
linked to increased
infection
susceptibility.

Gender =1 (Female) | 0.062 0.08 0.04 0.06 Higher infection
prevalence
anatomically in
females.

LYM <1.5 0.051 0.06 0.1 0.65 Low lymphocyte

Density >1020 0.048 0.05 0.09 0.03

Urine >0 0.047 0.05 0.1 0.77

Erythrocyte est urinary tract

hology but less
ific.

1. The first system was developed using model-derived, data-driven hresho d weighting.

2. The second system was designed to optimize both sensitivity and cificity, leving balanced classification

performance.

3. The third system prioritized minimizing false negatives, ¢ m sensitivity and PNV.

Table 4. Performance metrics of the LDSS evaluated usifig nd validation datasets.

A. Results from the external test set.

Method Sensitivity | Specificity | PPV Accuracy | F1 ROC- PR-
Score AUC AUC
Model- 55.94 85.83 53.31 0.51 79.1 54.59 70.88 54.62
Prioritized (53.87— (85.03— (0.49- | (78.31- (52.57— | (67.58— | (50.71—
Score 57.99) 86.59) 0.54) 79.91) 56.60) 74.28) 57.71)
System?
Dual- 64.77 76.62% 0.46 73.96 52.75 70.70 54.63
Optimization | (62.76— (75.67— (73.09— (51.03— | (68.70— | (52.72—
Score 66.72) 77.55 (0.44— | 74.82) 54.46) 72.70) 56.72)
System? 0.49)
SAFE-Score 95.34 . 93.77 1.20 0.23 37.13 40.49 57.81 60.52
Systems? (94.38— (24.77— | (92.51— (0.21- | (36.18— (39.44— | (57.81- | (55.55—
96.14) 6.66) 94.83) (1.03- | 0.25) 38.08) 41.55) 57.81) 65.58)
1.136)
1. 1 ; 1,093; FN = 983
2. ; 1,803; FN = 786
3. ; FP=6,148;, FN = 104
B. Results idaftion test set.
ity | Specificity | PPV NPV PLR NLR Accuracy | F1 ROC- PR-
Score AUC AUC
84.78 46.47 89.87 3.81 0.50 79.80 51.51 71.31 34.80
(83.04— (43.09— | (88.74— | (3.32— | (0.44— | (78.06— (47.30— | (68.60— | (31.05—
86.41) 49.89) 90.85) 4.37) 0.56) 81.46) 55.37) 73.94) 38.61)
76.48 39.19 90.92 2.83 0.44 74.63 49.36 71.40 32.35
(74.44— (36.65— | (89.71— | (2.54— | (0.38— | (72.75— (45.86— | (68.82— | (29.00—
78.42) 41.80) 92.00) 3.15) 0.50) 76.43) 53.01) 73.94) 35.66)
AFE-Score 94.87 24.30 22.22 95.40 1.25 0.21 37.40 36.08 59.58 22.03
Systems? (92.26— (22.33— (21.63— | (93.14— | (1.21- | (0,14— | (35,38— (33.46— | (58.14— | (20.05—
96.79) 26.36) 22.83) 96.95) .1.30) | 0,32) 39.46) 38.63) 61.03) 24.01)
1. TP =237, TN = 1,521; FP = 273; FN = 172
2. TP =272; TN = 1,372; FP = 422; FN = 137

3. TP = 388; TN = 436; FP = 1,358; FN = 21





