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Abstract 
Introduction: Urinary tract infections are a common diagnostic challenge. Although urine culture remains the gold 
standard, it is time-consuming and often ordered reflexively. This study aimed to develop and validate an interpretable 
machine-learning–based Laboratory Decision-Support System (LDSS) to guide reflective urine culture prioritization using 
only structured laboratory data. 
Materials and Methods: We analyzed a retrospective cohort of 51,923 adult patients. Seven machine learning 
algorithms were trained, with the random forest (RF) model demonstrating the highest accuracy. SHapley Additive 
exPlanations analysis was employed to ensure model interpretability. A reduced RF model, using the top 10 predictive 
features, was used to construct three scoring systems: one emphasizing model fidelity, one optimizing diagnostic balance, 
and one maximizing sensitivity. 
Results: The RF model demonstrated excellent performance (external receiver operating characteristic–area under the 
curve [ROC-AUC]: 0.956). The simplified 10-variable model maintained high accuracy (ROC–AUC: 0.947). Key predictors 
included bacterial count, leukocyte count, nitrite presence, and patient age. The scoring systems offered flexible options 
tailored to different diagnostic priorities, with the SAFE-Score achieving 95.3% sensitivity. 
Conclusion: The LDSS is intended to support reflex culture prioritization, not reduce overall culture testing. By 
streamlining pre-analytical triage and highlighting clinically significant samples, it promotes appropriate culture 
utilization and strengthens antimicrobial stewardship, while preserving the central role of urine culture in infection 
management. 
Keywords: 
 
Introduction 
Urinary tract infections (UTIs) are among the most common infections in clinical practice, with an estimated global 
incidence exceeding 150 million cases annually [1]. They are associated with substantial healthcare costs, frequent 
antibiotic prescriptions, and increased diagnostic burden, particularly in outpatient and emergency settings [2,3]. 
Accurate diagnosis remains challenging due to nonspecific symptoms and reliance on time-consuming laboratory tests [4]. 
 
Urine culture is considered the gold standard for UTI diagnosis. However, its 24–48-hour turnaround often necessitates 
empiric antibiotic treatment before microbiological confirmation [5]. This practice contributes to antimicrobial resistance, 
now recognized by the World Health Organization as a global health threat [6]. Moreover, up to 60%–70% of urine 
cultures yield negative or clinically insignificant results, highlighting potential overuse of testing and therapy [7]. 
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Rapid dipstick tests, detecting leukocyte esterase and nitrite, provide immediate screening but show variable performance 
across populations, with sensitivity and specificity ranging from 68% to 88% and 17% to 98%, respectively [8]. 
This diagnostic uncertainty has prompted efforts to improve laboratory decision-making, including the use of reflective 
testing. Reflective testing, increasingly recognized in modern laboratory medicine, involves laboratory physicians adding 
further analyses or interpretative comments after reviewing initial test results to enhance diagnostic reasoning [9]. In 
UTIs, this expert-led approach aids accurate interpretation and encourages more judicious use of microbiological testing. 
Laboratory physicians thus face the dual challenge of minimizing unnecessary culture requests while ensuring patients 
with a high likelihood of positive cultures are correctly identified. 
 
 
In most laboratory information systems (LIS), detailed symptom information is not captured; only test orders and 
preliminary diagnoses, such as International Classification of Diseases (ICD) codes, are typically available. Consequently, 
the predictive modeling approach in this study relied solely on structured laboratory data. To address this, we developed a 
standardized, interpretable, and data-driven Laboratory Decision-Support System (LDSS) to optimize urine culture 
utilization using routine laboratory parameters. The LDSS is not intended to replace clinical diagnoses but to assist 
laboratory physicians in prioritizing reflex urine culture testing within laboratory workflows. Diagnostic responsibility 
remains entirely with the treating clinician, while the LDSS provides reproducible, standardized insights derived from 
LIS data. 
 
 
Artificial intelligence (AI) and machine learning (ML) have gained increasing attention for developing predictive models in 
UTI diagnosis. Various algorithms—including logistic regression, random forests (RFs), XGBoost, Light Gradient Boosting 
Machine (LightGBM), and TabNet—have demonstrated robust performance using structured data such as urinalysis 
results, demographics, and clinical history [10–12]. Reported AUROC values commonly exceed 0.85, with some studies 
achieving 0.95 or higher in external validation cohorts [11,13]. 
 
 
Recent studies have highlighted the importance of model interpretability. By employing SHapley Additive exPlanations 
(SHAP), our LDSS not only ensures transparency but also facilitates clinical integration by illustrating the real-time 
contribution of each variable. Real-world implementations of ML-based LDSSs have shown reductions in unnecessary 
culture orders, accelerated treatment decisions, and improved antibiotic stewardship outcomes [12,14]. 
 
 
Despite these advances, challenges remain. Many predictive models are trained on single-center datasets and lack 
external validation, raising concerns about generalizability across institutions and diverse patient populations [13,15]. 
Additionally, variability in urinalysis platforms and clinical practice patterns may limit reproducibility and scalability. 
Unlike existing tools, the proposed LDSS provides three distinct scoring systems tailored to different clinical priorities, 
ranging from high-sensitivity triage to specificity-focused decision-making. This flexibility promotes collaboration among 
biochemists, microbiologists, and clinicians while reducing diagnostic waste by minimizing unnecessary urine culture 
requests. 
 
 
The aim of this study was to develop and externally validate a robust, interpretable ML-based LDSS to predict urine 
culture outcomes in patients with suspected UTIs. By standardizing reflective testing practices, the LDSS supports 
interdisciplinary decision-making, optimizes resource utilization, and ultimately contributes to rational antibiotic 
prescribing across healthcare settings. 
 
 
Materials and Methods 
Study Population/Subjects 
This study was conducted at xxxx Hospital. Ethical approval was obtained from the xxxx Hospital Ethics Committee prior 
to study initiation (Resolution No. 2025/02-05, dated March 10, 2025). 
 
Eligible participants were adults aged ≥18 years who presented as inpatients or outpatients to the main hospital between 
January 1, 2014, and December 31, 2024, or to its affiliated hospital between January 1 and February 28, 2025. Inclusion 
criteria required patients to undergo their first urinalysis, complete blood count (CBC), and urine culture, ordered by a 
specialist physician based on clinical indication. 
 
 
The study cohort included both culture-positive and culture-negative cases, capturing the full spectrum of patients for 
whom urine cultures were clinically indicated. Consequently, the dataset reflects real-world test-ordering practices rather 
than a biased subset of confirmed infections. 
 
 
Patients were excluded if they had incomplete test results, missing sub-parameters, non-bacterial pathogens in their urine 
culture, delays exceeding one hour between urine sample collection and laboratory registration, delays exceeding 30 
minutes for hemogram samples between phlebotomy and laboratory receipt, or a history of antibiotic treatment prior to 
testing. 
 
 

un
co

rre
cte

d p
roo

f



 
 

CBC analyses were performed using UniCell DxH 800 analyzers (Beckman Coulter, Miami, FL, USA) from 2014 to 2020 
and XN-2000 systems (Sysmex Corporation, Kobe, Japan) from 2020 onward. Urinalysis tests were conducted using fully 
automated analyzers across three periods: H-800 and FUS-200 systems (Dirui Industrial Co., Changchun, China) from 
2014 to 2018; BT Uricell 1280–1600 (Bilimsel Products, Izmir, Türkiye) from 2018 to 2021; and U2610–U1600 (Zybio 
Corporation, Chongqing, China) from 2021 onward. 
 
 
Midstream urine samples were collected in sterile containers simultaneously with urinalysis and processed according to 
standard microbiological procedures. Samples without detectable bacterial growth after 24 hours were incubated for an 
additional 48 hours; if no growth was observed, the result was reported as “no growth.” 
 
 
Reagents and calibrators for urinalysis were obtained from authorized manufacturers and were certified and registered 
products. Quality control materials were sourced from Bio-Rad (California, USA). All results were reviewed and validated 
for accuracy and reliability by both a clinical biochemistry specialist and a clinical microbiology specialist. 
 
 
Study Design 
Patient identifiers were anonymized, and a dataset comprising age, sex, hemogram, urinalysis, and urine culture results 
from 55,385 patients (main hospital: 52,854; affiliated hospital: 2,531) was imported into Microsoft Excel 2021 (USA). 
Symptom data were not included, as such information is not routinely recorded in LIS. In standard laboratory workflows, 
test orders are typically accompanied by preliminary diagnoses or ICD codes from the requesting physician, but detailed 
patient symptoms are not captured. Accordingly, the predictive model in this study was developed exclusively on 
structured laboratory data, aiming to forecast urine culture outcomes rather than to establish a clinical diagnosis of UTI. 
After applying exclusion criteria, the final dataset included 49,720 patients, with an external validation cohort of 2,203 
patients. The dataset was subsequently transferred to Python (version 3.13.1, USA) for ML analysis. 
Following data cleaning, the main dataset was divided into training, internal test, and external test subsets using a 
60:20:20 stratified sampling strategy based on the binary target variable, ensuring preservation of class distribution. 
Patient flow throughout the study is depicted in Figure 1, in accordance with the Standards for Reporting Diagnostic 
Accuracy (STARD) guidelines. 
 
 
Data Preprocessing and Training of ML Algorithms 
Patient data were initially exported from the LIS into Microsoft Excel. Hemogram values and flow cytometry parameters 
from urinalysis were used directly due to device standardization. Semi-quantitative dipstick results—reported by 
urinalysis analyzers as categorical values (e.g., “+,” “++,” “+/-,” “trace”)—were converted into numerical equivalents (e.g., 
“++” mapped to 2; “trace” standardized to 0.5) to ensure quantitative consistency. Variables describing urine color and 
appearance were also recategorized by grouping similar classifications (e.g., light yellow to dark red; clear to very cloudy) 
to standardize the dataset. 
 
 
Urine culture results were binarized as follows: samples with ≥10,000 CFU/mL bacterial growth were defined as positive 
(label = 1), while samples with <10,000 CFU/mL, mixed flora, colonization, yeast, or no growth were classified as negative 
(label = 0). 
 
The 10,000 CFU/mL threshold was selected based on recent evidence and the 2024 European Association of Urology 
guidelines, which acknowledge that lower colony counts (≥10³–10⁴ CFU/mL) may be clinically significant in symptomatic 
or catheterized patients. Nelson et al. demonstrated that these lower thresholds preserve diagnostic accuracy for 
symptomatic UTIs, supporting their use in reflective testing workflows. Additionally, Werneburg et al. showed that 
urinalysis parameters reliably predict the absence of infection at this threshold, reinforcing its clinical validity. This 
definition also aligns with our institutional microbiology reporting standard for significant bacteriuria [16–18]. 
 
Yeast and colonization findings were labeled as negative (label = 0) based on established microbiological evidence and 
laboratory reporting standards. In urinary cultures, the presence of Candida species typically reflects colonization or 
contamination rather than true infection, even at colony counts exceeding 10⁴–10⁵ CFU/mL, unless accompanied by 
compatible clinical symptoms [19]. Classifying yeast as negative prevented false-positive propagation in the LDSS and 
improved the model’s clinical specificity. 
 
Similarly, cases labeled as “colonization”—including cultures with mixed flora or non-uropathogenic organisms—were 
considered negative. This approach aligns with standard microbiology practice, where such findings are reported as 
clinically non-significant. Although CLSI M100 (2025) does not define colony-count thresholds for colonization or 
candiduria, its terminology guided our categorization strategy. This interpretation reflects real-world laboratory 
workflows, ensuring that the LDSS mirrors standardized reporting logic and remains generalizable across institutions 
[20]. 
 
The cleaned dataset was transferred to Python for ML analysis. To enhance model robustness and address class 
imbalance, a stratified data partitioning scheme was applied, allocating 60% of samples to training and 20% each to 
internal and external testing. The dataset exhibited natural imbalance, with 22.4% culture-positive and 77.6% culture-
negative samples. To mitigate majority-class bias, feature standardization and rebalancing strategies 
(class_weight='balanced') were applied uniformly across all classifiers. 
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As a preliminary check, a baseline Logistic Regression model was trained and evaluated across all data splits. ROC-AUC 
scores (≈0.74, 0.73, 0.73 for training, internal, and external sets, respectively) and F1 scores (0.55, 0.54, 0.54) 
demonstrated consistent generalization without evidence of overfitting or imbalance-driven inflation. The close alignment 
of these baseline metrics confirmed that stratified sampling preserved class proportions across all subsets (≈22.4% positive 
vs. 77.6% negative), ensuring reliable model development. 
 
ML Model Selection and Development 
The results confirmed that the methodological setup—including stratified sampling and proportional weighting—
effectively mitigated class imbalance and provided a reliable foundation for model development. Logistic Regression was 
used not as a primary model, but as a diagnostic tool to verify dataset integrity and the fairness of the training process 
[21]. 
 
Model development was performed in Python 3.13.1 using widely adopted libraries and workflows. Seven ML algorithms 
were evaluated for their suitability with the dataset and their potential effectiveness in predicting urine culture outcomes: 
RF, Extreme Gradient Boosting (XGBoost), LightGBM, CatBoost, Logistic Regression (LR), Artificial Neural Network 
(ANN), and K-Nearest Neighbors (KNN). 
 
Variables included in the analysis: 
• Demographic: Age, sex 
• Hemogram: White blood cell, neutrophil, lymphocyte, monocyte, eosinophil, basophil, hemoglobin (HGB) 
• Urine Dipstick: Leukocyte esterase, nitrite, glucose, protein, pH, erythrocyte, bilirubin, urobilinogen, ketone 
• Other Urinalysis: Urine color, urine density, appearance 
• Flow Cytometry: Bacteria count, cylinder, yeast, urine leukocyte count 
Data preprocessing, model training, evaluation, and visualization were conducted using open-source Python libraries: 
• Data Processing and Analysis: pandas (v2.2.2), numpy (v2.0.2), optuna (v4.3.0) 
• ML Model Development: scikit-learn (v1.6.1), xgboost (v2.1.4), lightgbm (v4.5.0), catboost (v1.2.8), tensorflow 
(v2.10), keras (v2.10), torch (v2.6.0 + cu124) 
• Model Evaluation and Visualization: matplotlib (v3.10), seaborn (v0.13.2), scipy.stats (v1.9), sklearn.metrics 
(v1.2), SHAP (v0.47) 
 
Detailed hyperparameter optimization procedures, including search strategies and parameter configurations for each 
model, are provided in the Supplementary Material (Table S1). Each model was retrained using the optimal 
hyperparameters identified during tuning. Final model evaluation was based on F1 and ROC-AUC scores derived from the 
internal test set. 
 
Performance Evaluation 
Performance evaluation was conducted using standard Python-based data science libraries. The modeling process was 
assessed comprehensively through internal cross-validation, hyperparameter tuning, and multiple performance metrics. 
 
1. Classification Performance Metrics: Model discrimination and predictive capability were evaluated using: 
• Area Under the Receiver Operating Characteristic Curve (AUC–ROC) 
• Area Under the Precision-Recall Curve (AUC-PR) 
• Sensitivity and Specificity 
• Positive Predictive Value (PPV) and Negative Predictive Value (NPV) 
• Positive Likelihood Ratio (PLR) and Negative Likelihood Ratio (NLR) 
• F1-Score 
 
2. Model Interpretability Metrics: To enhance clinical transparency and foster trust in algorithmic decisions, 
interpretability was assessed using: 
• Feature-Importance metrics 
• SHAP graphs 
This multidimensional evaluation approach balances predictive performance with explainability, providing a robust 
framework for forecasting urine culture outcomes based solely on laboratory and demographic data. 
 
Development of the LDSS 
The LDSS was built using the best-performing ML model identified during model selection. SHAP analysis was employed 
to select the ten most informative features, and a simplified model was retrained using only these variables. The reduced 
model maintained performance comparable to the full model, supporting its suitability for practical implementation. 
Instead of the default probability threshold of 0.5, an optimized threshold based on Youden’s J statistic was applied to 
improve sensitivity and minimize missed infections. Each selected feature was then converted into a binary indicator 
using individual cut-points derived from ROC analysis, enabling construction of a straightforward cumulative score. 
 
 
 
Feature-importance values were normalized to derive clinically interpretable weights. Highly influential predictors 
received slightly higher weights, while moderately informative features were scaled conservatively to balance performance 
with interpretability. The final scoring system was recalibrated using internal data and externally evaluated, 
demonstrating preserved sensitivity and specificity. This streamlined, transparent design ensures that the LDSS is 
suitable for routine use within laboratory workflows. 
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Validation of the LDSS 
An independent validation dataset, obtained from an affiliated hospital within the same healthcare network, was used to 
assess the generalizability and robustness of the LDSS through temporal validation. This temporally separated 
retrospective dataset was entirely independent of all model development phases, including training, feature selection, and 
score construction. 
 
Performance of the reduced 10-variable RF model and the three derived scoring systems was evaluated within this 
separate clinical environment. Standard classification metrics were computed and compared with those from the original 
external test set, providing insight into the system’s real-world applicability. 
 
The validation strategy adheres to recommendations from the International Federation of Clinical Chemistry and 
Laboratory Medicine for evaluating diagnostic tools using independent datasets. This approach strengthens the clinical 
credibility of the LDSS by demonstrating reproducibility across diverse healthcare settings. 
 
Statistical Analysis 
Descriptive statistics are presented as means ± standard deviations (SD) for continuous variables and as frequencies with 
percentages for categorical variables. Comparative analyses between the development and validation datasets were 
conducted using: 
 
• Student’s t-test for normally distributed continuous variables 
• Welch’s t-test for continuous variables with unequal variances or sample sizes 
• Pearson’s Chi-square test for categorical variables 
• Z-tests for proportions and McNemar’s test for paired categorical outcomes, particularly for comparing model 
performance metrics across datasets 
 
These statistical comparisons were used to evaluate diagnostic consistency and identify significant differences in 
classification outcomes, providing insight into the reproducibility and robustness of the LDSS across diverse clinical 
settings. 
 
All p-values were two-sided, with statistical significance defined as p < 0.05. Analyses were conducted using Python 3.13 
and its associated statistical packages. 
 
Results 
Dataset Description and Data Preprocessing 
The analytical cohort comprised 51,923 patient encounters, including 49,720 records from the main institutional database 
and 2,203 from an affiliated tertiary center. The validation cohort was enriched with inpatients from high-acuity units, 
such as Palliative Care and Gynecologic Oncology, and was specifically used to assess the external validity of the LDSS. 
The validation cohort demonstrated significantly higher age across all demographic strata (total: 43.92 vs. 38.28 years; 
males: 48.04 vs. 39.69; females: 41.23 vs. 37.41; all p < 0.05). Hematologic comparisons revealed statistically significant 
reductions in lymphocyte and eosinophil counts, accompanied by a modest but significant increase in HGB levels (p < 
0.05). 
 
Among urinalysis variables, the validation group exhibited higher bacterial counts, increased mucus presence, and 
elevated pH levels, whereas urine specific gravity and cylinder counts were lower (p < 0.05 for all). No significant 
differences were observed in WBC, neutrophil, monocyte, or basophil counts, nor in leukocyte counts, yeast presence, or 
gender distribution (all p > 0.05). Although the proportion of urine culture-positive cases was numerically similar (22.4% 
vs. 18.3%), this difference reached statistical significance (p < 0.05), potentially reflecting distinct microbiologic or clinical 
characteristics in the validation population. 
 
Overall, these findings indicate that while the two datasets are broadly comparable, the validation cohort exhibits distinct 
demographic and laboratory profiles, likely due to its inpatient composition. These differences should be considered when 
interpreting LDSS performance in more complex clinical settings. Detailed summary statistics and p-values for each 
variable are provided in Table 1. 
 
Hyperparameter Tuning 
Each ML model was trained and optimized to achieve optimal performance on our dataset. Final hyperparameter 
configurations, tailored to the structure of each algorithm, are summarized in the Supplementary Material (Table S2). 
 
Performance Metrics of ML Models 
The performance of seven ML models was evaluated using both internal and external test datasets. Ensemble-based 
methods—RF, CatBoost, and XGBoost—consistently demonstrated high accuracy (≥0.929) and F1 scores (>0.83) across 
both datasets, highlighting their robustness for clinical prediction tasks. 
On the external test set, RF outperformed all other models, achieving the highest ROC-AUC (0.956) and PR-AUC (0.907), 
indicating superior discrimination and precision-recall trade-off. CatBoost achieved the highest sensitivity (0.771) while 
maintaining balanced performance across other metrics. 
 
KNN demonstrated exceptional specificity (0.988) and PPV (0.945) in the external set, making it particularly effective for 
ruling in cases. Conversely, LR, while computationally efficient, showed the lowest sensitivity and F1 scores, limiting its 
diagnostic utility. 
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Performance metrics from the external dataset closely mirrored those of the internal test set for all models, reinforcing 
their generalizability and stability. Comprehensive statistics for both datasets are provided in Table 2 and Figure 2. 
Among all evaluated algorithms, RF exhibited the most consistent and highest overall performance, with an internal 
ROC-AUC of 0.952 [95% CI: 0.948–0.956] and an external ROC-AUC of 0.956 [95% CI: 0.952–0.960], along with strong PR 
characteristics. 
 
Given its superior accuracy, consistent generalizability, and interpretability, RF was selected as the core algorithm for 
integration into the LDSS. SHAP analysis was then performed on the final model to provide insight into the individual 
contribution of each feature to the predicted outcomes. 
 
SHAP Analysis of the Optimal RF Model 
Model interpretability was improved using SHAP, which quantifies the contribution of each feature to the predictions 
generated by the final RF model. As shown in Figure 3, the most influential features were 
• Bacteria_Count (SHAP value: 0.061) 
• Urine_Leu_Count (0.055) 
• Nitrite (0.052) 
• Age and Leukocyte Esterase (both 0.041) 
These features correspond with well-established clinical markers of UTI, supporting the biological plausibility of the 
model. 
 
Features with moderate importance included HGB, Gender, and Lymphocyte Count (LYM), with SHAP values ranging 
from 0.017 to 0.030. Features such as Bilirubin, Urobilinogen, and Ketone contributed minimally, each with SHAP values 
below 0.003. 
 
Overall, the feature ranking confirms that the model primarily relies on clinically relevant variables, enhancing 
transparency and supporting its integration into laboratory decision-making. 
 
Performance Metrics of the LDSS 
A simplified RF model, built using the top 10 SHAP-derived features, maintained performance comparable to the full-
feature model (ROC-AUC: 0.952 vs. 0.947; PR-AUC: 0.897 vs. 0.890), supporting its suitability for clinical implementation 
(Table 2). Based on these variables, three complementary scoring systems were developed to address distinct operational 
needs within laboratory workflows (Table 3): 
• Model-Prioritized Score: Retains the behavior of the original machine-learning model by assigning weights 
directly from normalized SHAP values. This version is ideal for institutions seeking high overall discrimination while 
remaining faithful to the underlying algorithm. 
•  
• Dual-Optimization Score: Adjusts feature weights to balance sensitivity and specificity, as reflected in stable 
metrics across both test datasets (Table 4, Figure 4). This score is intended for laboratories aiming to minimize both 
missed infections and unnecessary cultures. 
•  
• SAFE-Score: Optimized for high sensitivity and NPV, this score is suitable for safety-critical settings where 
missing true infections is unacceptable—such as high-acuity units, elderly populations, or immunocompromised patients. 
Its higher sensitivity comes at the expense of specificity, highlighting the trade-off between diagnostic conservatism and 
resource utilization. 
•  
Across all scoring systems, sensitivity remained consistent in external and independent validation cohorts, while 
specificity varied according to prioritization strategy (Table 4). Together, these tools provide laboratories with flexible 
options that can be tailored to local clinical priorities, test-ordering practices, and antimicrobial stewardship goals (Figure 
4). 
 
Discussion 
ML-based approaches offer substantial potential for the early diagnosis of UTIs. With the rising prevalence of antibiotic 
resistance, reducing unnecessary antibiotic use has become increasingly critical. Recent studies demonstrate that ML 
models improve diagnostic accuracy by integrating clinical symptoms, medical history, and urinary biomarkers, rather 
than relying solely on culture results [22]. 
 
Moreover, AI–driven decision-support systems (AI-DSS) can reduce diagnostic workload in hospitals, although their 
clinical validation remains limited [15]. Urinary biomarkers, such as nitrite and leukocyte esterase, exhibit high 
sensitivity for UTI diagnosis, yet their integration into ML models is essential to mitigate false-positive results [23]. AI-
assisted methodologies are expected to be particularly beneficial for early detection of recurrent UTIs and multidrug-
resistant pathogens, potentially improving patient outcomes and guiding more precise therapeutic interventions [23,24]. 
In this study, we evaluated the performance of multiple ML models in predicting urine culture outcomes and assessed 
their clinical applicability using explainable AI (XAI) techniques. Validation on a demographically and clinically distinct 
inpatient cohort further demonstrated the robustness and real-world adaptability of the LDSS. The incorporation of XAI 
enhanced interpretability, providing insight into the decision-making process and supporting potential integration in 
complex healthcare settings. 
 
The LDSS was developed using all physician-ordered urine culture requests, including both culture-positive and culture-
negative cases. Consequently, the dataset reflects the complete real-world distribution of suspected UTIs encountered in 
laboratory practice, enabling the model to learn discriminative patterns for both infection and non-infection samples. 
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Importantly, the LDSS functions solely as a laboratory-level decision-support tool rather than a diagnostic system. Its 
predictions are limited to variables available in the LIS and are intended to complement, not replace, physicians’ 
diagnostic judgment. 
 
Gender and Age-Related UTI Incidence 
In our study, UTIs were significantly more common in female patients than in males. This finding aligns with existing 
literature and reinforces the well-established notion that women are more susceptible to UTIs due to urogenital anatomy, 
hormonal fluctuations, and lifestyle factors. Schmiemann et al. reported that UTI incidence in women is four to five times 
higher than in men [1]. Similarly, Hooton et al. identified a higher risk in women attributable to a shorter urethra and 
variability in periurethral microbial flora [25]. Additional risk factors include age, postmenopausal hormonal changes, and 
a history of recurrent infections. 
 
Age also emerged as a critical determinant, with UTI incidence progressively increasing—particularly among women aged 
65 years and older. While Foxman et al. reported peak incidence in women aged 15–29, with a secondary rise in 
postmenopausal groups [26], and Møller et al. linked estrogen depletion after age 50 to heightened susceptibility [11], our 
study identified older age (≥65 years) as an independent risk factor for positive urine culture in the LDSS model. This 
finding underscores the importance of incorporating age as a predictive variable and reflects the growing burden of UTIs 
in elderly populations. 
 
Performance of ML Models 
The predictive performance of the models developed in this study is consistent with, and in several cases surpasses, 
previously reported ML approaches for UTI prediction. Among the algorithms tested, ensemble-based models—
particularly RF and CatBoost—demonstrated consistently high accuracy, balanced sensitivity and specificity, and 
favorable F1 scores. Compared to prior models reported by Vries et al. and Flores et al., our RF model showed superior 
performance across multiple evaluation metrics [2,27]. Likewise, our CatBoost implementation outperformed the model 
described by Mancini et al., which exhibited lower AUC and F1 values in a comparable clinical context [13]. 
 
Tree-based gradient boosting methods, such as XGBoost and LightGBM, also performed robustly and yielded results 
similar to high-performing models developed by Choi et al. and Lin et al., indicating strong generalizability across diverse 
patient populations [5,28]. In studies by Dhanda G et al. and Taylor RA et al., RF and XGBoost models similarly 
demonstrated superior discriminatory capacity, achieving AUC–ROC values of 0.85 and 0.90, respectively [29,30]. 
 
The KNN model achieved precision metrics comparable to prior studies; however, its limited interpretability may 
constrain clinical adoption [7]. Conversely, LR, while highly interpretable, exhibited lower sensitivity and F1 scores—
consistent with Ramgopal et al., where the model tended to overpredict positive cases, reducing precision [10]. ANN (MLP) 
models, though commonly employed in UTI prediction studies, demonstrated moderate performance in our dataset, 
slightly below previously reported benchmarks [2]. 
 
Overall, these results reinforce the value of ensemble ML methods in the context of a LDSS for UTI prediction. They offer 
high predictive accuracy and consistent performance across internal and external validation cohorts, supporting their 
applicability in real-world clinical settings. 
 
Several studies have investigated machine-learning–based urine culture prediction, varying in complexity and 
generalizability. Seheult et al. developed a decision-tree algorithm across multiple institutions to identify urinalysis 
predictors of culture positivity, reporting ROC-AUC values of approximately 0.78–0.79; however, their study lacked 
external validation and interpretability assessment. By comparison, our model achieved higher discrimination during 
development (ROC-AUC = 0.94–0.96) under cross-validation. Following conversion into a simplified score-based LDSS, 
real-world performance remained consistent (ROC-AUC ≈ 0.70–0.72; F1 ≈ 0.50–0.55). This decline reflects the expected 
trade-off between model complexity and clinical interpretability, as the LDSS was designed for practical integration into 
LIS rather than maximizing algorithmic precision [31]. 
 
Sergounioti et al. applied ensemble classifiers, including RF and XGBoost, to real-world laboratory data, achieving 
AUROC values of 0.79–0.82. However, their models combined clinical and laboratory parameters and lacked transparent 
feature-importance analysis. In contrast, our LDSS relied solely on structured laboratory data, achieved comparable 
discrimination (0.70–0.72), and preserved interpretability and reproducibility through rule-based score calibration via the 
Model-Prioritized and Dual-Optimization systems [32]. 
 
Sheele et al. investigated bacteriuria prediction in an emergency-department cohort using mixed clinical–laboratory 
features, yielding AUC–ROC values of 0.86–0.93 depending on the CFU/mL threshold. While their results were strong in 
a high-acuity population, our laboratory-only LDSS achieved comparable sensitivity (up to 95%) in routine diagnostic 
settings, highlighting its potential as a front-end decision-support tool for reflex culture testing [33]. 
Collectively, previous studies demonstrated the feasibility of ML-assisted urine culture prediction but often emphasized 
algorithmic performance over interpretability and clinical applicability. The present study addresses this gap by 
establishing a transparent, externally validated, and operational LDSS framework that maintains clinically acceptable 
performance while remaining fully interpretable and implementable within routine laboratory workflows. 
Explainability and Feature Importance 
SHAP-based feature-importance analysis in our study revealed a variable ranking that aligns with and extends existing 
literature. The most influential predictors were bacterial count, urine leukocyte count, nitrite, age, and leukocyte esterase. 
These findings are consistent with the meta-analysis by Devillé et al., which reported that combining nitrite and leukocyte 
esterase yielded a sensitivity of 88% and specificity of 98% for UTI diagnosis [8]. Similarly, Lachs et al. demonstrated that 
integrating these parameters with clinical symptoms significantly improves diagnostic accuracy [34]. 
 

un
co

rre
cte

d p
roo

f



 
 

Notably, our model also identified HGB levels, sex, and lymphocyte counts as important features with relatively high 
SHAP values, suggesting sensitivity to broader systemic or demographic factors that may influence infection risk. This 
aligns with Zhao Q et al., who reported age and sex among the top predictors in a SHAP-based post-urostomy UTI risk 
model [35], and Wang H et al., who found that systemic inflammatory markers and age were highly important in 
predicting post-surgical UTIs [36]. 
 
The predominance of microscopic urinalysis variables—particularly bacterial and leukocyte counts—over clinical or 
demographic features underscores the model’s responsiveness to diagnostic biomarkers. This differentiates our approach 
from models such as Lee H et al., which focused on predicting antimicrobial resistance patterns but also leveraged SHAP 
analysis for interpretability [37]. 
 
Recent literature highlights the limitations of reflexive urine culture testing in the absence of clinical context. Munigala et 
al. and others have shown that reflex algorithms triggered by markers like leukocyte esterase or nitrite may reduce test 
volume but compromise diagnostic precision when symptom data are unavailable [38]. Fakih M et al. similarly argue that 
urinalysis alone is insufficient for accurate UTI diagnosis in asymptomatic patients, risking overdiagnosis and 
overtreatment [39]. 
 
Our study addresses the diagnostic gap through a reflective developed solely using structured laboratory data. Because 
symptom data are typically absent from LIS, the LDSS optimizes culture utilization within real-world laboratory 
constraints. Rather than functioning as an autonomous decision-maker or reflex trigger, the system serves as a reflective 
tool, providing SHAP-based analytical insights to support laboratory physicians’ expert interpretation. 
This reflective framework promotes standardized testing and interdisciplinary consultation. In equivocal cases, LDSS 
outputs can facilitate dialogue between laboratory and clinical teams, helping reconcile test reduction with diagnostic 
safety. Such an approach advances rational microbiological testing and provides a scalable model for clinician-laboratory 
collaboration [40]. 
 
The LDSS demonstrated robust predictive performance across internal and external datasets, supporting its seamless 
integration into routine laboratory workflows and reflective testing processes. The system is designed not to replace 
culture testing but to prioritize it based on evidence-driven probability, maintaining diagnostic stewardship. 
 
To enhance accessibility for readers from diverse clinical and laboratory backgrounds, this study emphasizes the 
translational relevance of the LDSS over computational complexity. Its explainable design—supported by SHAP analysis 
and simplified scoring systems—enables non-technical users to interpret outputs transparently. While technical details 
were included to ensure methodological transparency and reproducibility, the interpretability of the system fosters trust, 
usability, and interdisciplinary communication between laboratory specialists and treating physicians. By promoting 
shared understanding of data-driven reasoning, the LDSS supports faster decision-making, improved test stewardship, 
and enhanced integration of laboratory insights into clinical workflows. 
 
LDSS 
Although symptom data were unavailable in the laboratory dataset, the LDSS was intentionally designed to function 
within the routine workflow of laboratory medicine, where test requests are frequently submitted without accompanying 
clinical narratives. By aligning the model with real-world laboratory constraints, the LDSS remains applicable and 
scalable across diverse clinical settings. 
 
To improve interpretability and minimize unnecessary complexity, feature selection was applied to reduce the number of 
input variables. Prior studies have consistently demonstrated that parsimonious models are better suited for clinical 
implementation, as they are easier to interpret and maintain, while preserving acceptable predictive performance [41,42]. 
Accordingly, subsequent model development was restricted to ten key parameters that did not result in a statistically or 
clinically meaningful decline in performance. This strategy ensured an optimal balance between model simplicity and 
predictive accuracy. 
 
Several published studies have similarly developed LDSS frameworks based on urine culture data, including those 
reported by de Vries et al., Dhanda et al., Del Ben et al., and Flores et al. [2,28,30,43]. Among these, Del Ben et al. 
employed a decision-tree-based approach, whereas the remaining studies selected RF as the primary algorithm [43]. The 
LDSS developed by de Vries and colleagues demonstrated performance metrics comparable to those observed in the 
present study, with AUC–ROC values ranging from 0.70 to 0.80. Although their model achieved a higher PPV, its NPV 
was lower than that of our model, highlighting differences in clinical trade-offs between false-positive and false-negative 
predictions. 
 
Notably, Dhanda et al. and Flores et al. implemented scoring systems that stratified patients into high- and low-risk 
groups, an approach that is conceptually aligned with the strategy adopted in the present study. Across key performance 
metrics, the predictive accuracy of their models was broadly comparable to that of our system [2,30]. 
 
What distinguishes our LDSS is the integration of three distinct predictive models within a unified decision-making 
framework. To our knowledge, this is the first study to report the implementation of such a multi-model structure for UTI 
prediction. This design enables clinicians and laboratory physicians to select among alternative strategies according to 
specific clinical priorities, such as maximizing case detection or minimizing unnecessary diagnostic testing. 
 
Although the SAFE-Score achieved excellent sensitivity, its specificity was limited (approximately 20%), a trade-off that 
may raise concerns regarding potential overtesting. Importantly, the LDSS was intentionally designed to accommodate 
this limitation by offering three complementary scoring strategies, each reflecting a distinct clinical philosophy. These 
include prioritization of patient safety (SAFE-Score), balanced diagnostic performance (Dual Optimization), and strict 

un
co

rre
cte

d p
roo

f



 
 

adherence to model-derived predictions (Model-Prioritized). Rather than enforcing a one-size-fits-all solution, the LDSS 
functions as a flexible framework that facilitates consensus-based decision-making, allowing institutions to align model 
selection with local clinical expectations and operational priorities. 
 
Crucially, the proposed system is not static. By continuously incorporating real-world data—particularly cases in which 
algorithmic recommendations are compared with expert laboratory physician judgments—the LDSS can be iteratively 
retrained and refined. As additional large-scale datasets are accumulated over time, improvements in specificity and 
overall diagnostic balance are anticipated, reflecting the inherent capacity of ML models to evolve with expanding data 
inputs. In this respect, the LDSS serves not only as an immediate decision-support tool but also as a scalable platform for 
continuous learning and performance optimization. 
 
Within the Turkish healthcare context, reflective testing has not yet been systematically implemented. Nevertheless, the 
LDSS offers a structured and standardized framework that may facilitate its adoption, reduce inappropriate urine culture 
requests, and support antimicrobial stewardship initiatives. Moreover, the Ministry of Health of Türkiye has recently 
introduced a “Rational Laboratory Utilization” directive that explicitly promotes reflex and reflective testing practices. 
This regulatory emphasis is expected to accelerate the integration of reflective testing into routine laboratory workflows, 
highlighting the timeliness and practical relevance of the proposed system. 
 
Finally, the LDSS was designed for seamless integration into routine clinical practice through Microsoft Excel, a widely 
available and familiar platform in most healthcare settings. All three predictive models are embedded within a single 
interface and generate concurrent outputs, enabling direct comparison and transparent interpretation at the point of use. 
Due to time constraints, the validation cohort was relatively small. Nevertheless, implementation of the LDSS within our 
hospital’s central laboratory is planned, where it will be deployed to support real-time microbiological decision-making. 
This implementation will allow prospective validation of the system within routine laboratory workflows, evaluation of its 
diagnostic impact, and quantification of downstream outcomes, including reductions in unnecessary urine cultures, 
shorter turnaround times, and improved antibiotic stewardship. In addition, future multicenter studies across diverse 
healthcare systems are planned, incorporating structured clinical variables such as symptomatology, comorbidities, and 
medication history to further enhance the model’s generalizability and clinical relevance. 
 
Study Limitations 
Although this study leveraged a large dataset and included external validation, several limitations should be 
acknowledged. First, all data were derived from a single healthcare network, which may limit generalizability to 
institutions with different patient populations, laboratory infrastructures, or clinical workflows. Second, the retrospective 
study design precluded assessment of the LDSS in real-time clinical decision-making; prospective Implementation studies 
are therefore required to determine its effects on clinical practice and patient outcomes. 
 
Third, the model relied exclusively on structured laboratory data and did not incorporate patient symptoms, comorbidities, 
medication history, or clinical notes—factors known to influence UTI risk assessment and antibiotic prescribing. In 
routine clinical care, integration of such information is primarily the responsibility of the treating physician, who orders 
diagnostic tests based on patient history, clinical presentation, and prevailing guidelines. In contrast, laboratory 
physicians are tasked with processing submitted specimens according to standardized pre-analytical and analytical 
protocols. Although pre-preanalytical factors, such as appropriate test selection, are important, these data are rarely 
available to LIS in a structured, analyzable format. Consequently, most LIS environments contain only coded test orders 
and limited demographic information, without access to patient symptomatology or detailed clinical context. 
 
Within these real-world constraints, the LDSS was designed not as a replacement for clinical judgment but as a 
complementary, interpretable decision-support tool that standardizes reflective testing and promotes communication 
between laboratory and clinical teams. Accordingly, the system functions as a laboratory-based reflex testing 
prioritization tool rather than as a diagnostic or therapeutic decision-making platform. 
 
Fourth, despite robust performance in both internal and external test sets, the relatively small independent validation 
cohort—enriched for high-acuity inpatients—may introduce spectrum bias and lead to overestimation of sensitivity in 
complex clinical populations. Fifth, although the conventional definition of significant bacteriuria is ≥10⁵ CFU/mL, this 
study adopted a ≥10⁴ CFU/mL threshold based on emerging clinical evidence and institutional practice. Future 
investigations should evaluate the effects of alternative thresholds on model calibration and performance across different 
clinical settings. 
 
Sixth, scoring weights and feature thresholds were calibrated using a fixed probability cutoff and Youden’s index derived 
from the present dataset. Optimal thresholds may vary across institutions and will require local adjustment to maintain 
the desired balance between sensitivity and specificity. Finally, while SHAP values were employed to enhance model 
interpretability, clinician acceptance, usability, and integration into routine workflows were not formally assessed. Future 
implementation studies are therefore essential to evaluate user engagement, potential alert fatigue, and cost-effectiveness 
prior to widespread clinical deployment. 
 
Conclusion 
We developed and preliminarily validated an interpretable, multi-model LDSS designed to improve the efficiency of urine 
culture utilization. By integrating ensemble machine-learning approaches with SHAP-based interpretability, the system 
demonstrated strong discriminatory performance while offering flexible scoring strategies that prioritize sensitivity, 
specificity, or an optimized balance between the two. The LDSS has the potential to reduce unnecessary urine cultures, 
support antimicrobial stewardship efforts, and promote standardized, evidence-based laboratory decision-making. 
Future work will focus on prospective, real-world implementation across diverse clinical settings. Planned enhancements 
include integration with electronic health record–derived clinical data, local calibration of decision thresholds, and 
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systematic evaluation of clinical impact, user adoption, and cost-effectiveness. These steps are critical for translating this 
early-stage model into a scalable and clinically actionable decision-support tool. 
 
Figure 1. STARD flow diagram of study participants and urine culture testing. 
Figure 2. Receiver operating characteristic (ROC) and precision-recall (PR) curves illustrating the predictive performance 
of ML models. 
Figure 3. SHAP summary plot showing variable importance in the RF model. 
Figure 4. LDSS workflow illustrating selection criteria based on diagnostic accuracy and operational priorities. 
 
Table 1. Baseline characteristics of the study population, including demographic, clinical, and laboratory variables. 
Characteristics 
a 

Unit Main 
Dataset 
(n = 49,720) 
Mean ± SD 

Training 
Set 
(n = 29,832) 
Mean ± SD 

Internal 
Test Set 
(n = 9,944) 
Mean ± SD 

External 
Test Set 
(n = 9,944) 
Mean ± SD 

Validation 
Set 
(n = 2,203) 
Mean ± SD 

p-value b 
(Main 
Dataset vs 
Validation 
Set) 

Age   38.28 ± 
26.85 

38.07 ± 
26.81 

38.89 ± 
26.99 

38.29 ± 
26.83 

43.92 ± 
28.53 

<0.05 

Male  Years 39.69 ± 
28.20 

39.33 ± 
28.12 

40.09 ± 
28.39 

40.37 ± 
28.26 

48.04 ± 
28.38 

<0.05 

Female  Years 37.41 ± 
25.96 

37.29 ± 
25.95 

38.17 ± 
26.07 

37.03 ± 
25.85 

41.23 ± 
28.33 

<0.05 

Gender       0.152 
Male n (%) 18,871 

(38.0%) 
11,358 
(38.1%) 

3,766 
(37.9%) 

3,747 
(37.7%) 

870 (39.5%)  

Female n (%) 30,849 
(62.0%) 

18,474 
(61.9%) 

6,178 
(62.1%) 

6,197 
(62.3%) 

1333 
(60.5%)  

WBC ×10⁹ 
cells/L 8.47 ± 4.63 8.5 ± 4.91 8.4 ± 3.86 8.45 ± 4.47 8.45 ± 3.48 0795 

Neutrophil ×10⁹ 
cells/L 5.1 ± 3.4 5.11 ± 3.34 5.05 ± 3.13 5.11 ± 3.81 5.18 ± 3.14 0244 

Lymphocyte ×10⁹ 
cells/L 2.45 ± 2.82 2.47 ± 3.27 2.42 ± 1.97 2.43 ± 1.99 2.36 ± 1.26 <0.05 

Monocyte ×10⁹ 
cells/L 0.68 ± 0.85 0.68 ± 1.01 0.68 ± 0.68 0.67 ± 0.37 0.67 ± 0.29 0.168 

Eosinophil ×10⁹ 
cells/L 0.2 ± 0.25 0.2 ± 0.25 0.2 ± 0.25 0.2 ± 0.24 0.19 ± 0.19 <0.05 

Basophil ×10⁹ 
cells/L 0.04 ± 0.06 0.04 ± 0.06 0.03 ± 0.05 0.04 ± 0.07 0.04 ± 0.03 1.000 

HGB g/dL 12.26 ± 1.91 12.26 ± 1.9 12.27 ± 
1.92 

12.27 ± 
1.91 

12.56 ± 1.98 <0.05 

Bacteria Count 
(urine) /HPF 33.57 ± 

124.45 
33.55 ± 
127.66 

33.93 ± 
120.89 

33.24 ± 
118.07 

41.7 ± 
157.49 <0.05 

Leucocyte 
Count (urine) /HPF 53.46 ± 

287.59 
53.81 ± 
288.38 

52.32 ± 
279.64 

53.53 ± 
293.02 

64.28 ± 
324.2 0.124 

Yeast /HPF 3.85 ± 
133.83 

5.04 ± 
170.15 1.95 ± 36.1 2.2 ± 37.23 3.13 ± 55.43 0.587 

Mucus /HPF 11.32 ± 
30.73 

11.34 ± 
30.69 

10.97 ± 
28.36 

11.62 ± 
33.03 

22.14 ± 
56.43 

<0.05 

Cylinder 
/HPF 0.04 ± 0.22 0.04 ± 0.22 0.04 ± 0.23 0.05 ± 0.23 

0 ± 0 <0.05 

Density 
- 1016.98 ± 

8.17 
1017.02 ± 
8.14 

1016.95 ± 
8.23 

1016.9 ± 
8.22 

1015.86 ± 
7.19 

<0.05 

pH - 5.9 ± 0.81 5.91 ± 0.82 5.89 ± 0.81 5.9 ± 0.81 6.05 ± 0.52 <0.05 
Urine Culture       <0.05 
Positive n 11,156 

(22.4%) 
6,694 
(22.4%) 

2,231 
(22.4%) 

2,231 
(22.4%) 

403 (18.3%) 1.000 

Negative n 38,564 
(77.6%) 

23,138 
(77.6%) 

7,713 
(77.6%) 

7,713 
(77.6%) 

1,800 
(81.7%) 1.000 

a Categorical variables were not included in this table. 
b Continuous variables were compared using Welch’s t-test, and categorical variables were analyzed with Pearson’s chi-
square test. A p-value < 0.05 was considered statistically significant. 
 
Table 2. Classification performance metrics of the ML models, including accuracy, sensitivity, specificity, and AUC. 
Model Sensitivity Specificity PPV NPV Accuracy F1 Score ROC-AUC PR-AUC 
Internal Test 
Set         
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RF 0.758 
(0.741–
0.776) 

0.985 
(0.982–
0.987) 

0.934 
(0.923–
0.946) 

0.934 
(0.929–
0.939) 

0.934 
(0.929–
0.938) 

0.838 
(0.826–
0.850) 

0.952 
(0.948–
0.956) 

0.897 
(0.891–
0.903) 

XGBoost 0.768 
(0.751–
0.784) 

0.976 
(0.973–
0.979) 

0.902 
(0.889–
0.916) 

0.936 
(0.930–
0.941) 

0.929 
(0.925–
0.934) 

0.830 
(0.816–
0.842) 

0.930 
(0.925–
0.935) 

0.861 
(0.854–
0.868) 

LightGBM 0.681 
(0.664–
0.699) 

0.972 
(0.968–
0.976) 

0.876 
(0.862–
0.894) 

0.913 
(0.907–
0.919) 

0.907 
(0.900–
0.913) 

0.766 
(0.751–
0.780) 

0.916 
(0.911–
0.921) 

0.825 
(0.818–
0.832) 

CatBoost 0.764 
(0.747–
0.784) 

0.980 
(0.977–
0.983) 

0.918 
(0.907–
0.931) 

0.935 
(0.930–
0.940) 

0.932 
(0.927–
0.937) 

0.834 
(0.822–
0.847) 

0.930 
(0.925–
0.935) 

0.861 
(0.854–
0.868) 

Logistic 
Regression 

0.350 
(0.330–
0.370) 

0.969 
(0.965–
0.973) 

0.765 
(0.738–
0.791) 

0.838 
(0.830–
0.846) 

0.830 
(0.823–
0.837) 

0.480 
(0.459–
0.501) 

0.790 
(0.782–
0.798) 

0.593 
(0.583–
0.603) 

ANN (MLP) 0.561 
(0.541–
0.582) 

0.943 
(0.937–
0.947) 

0.738 
(0.717–
0.758) 

0.881 
(0.875–
0.888) 

0.857 
(0.850–
0.864) 

0.637 
(0.621–
0.655) 

0.844 
(0.837–
0.851) 

0.698 
(0.689–
0.707) 

KNN 0.723 
(0.705–
0.743) 

0.984 
(0.981–
0.987) 

0.929 
(0.917–
0.940) 

0.925 
(0.919–
0.930) 

0.925 
(0.920–
0.931) 

0.813 
(0.801–
0.827) 

0.947 
(0.943–
0.951) 

0.903 
(0.897–
0.909) 

RF (with top 
10 variables) 
* 

0.769 
(0.761–
0.777) 

0.981 
(0.979–
0.984) 

0.924 
(0.919–
0.930) 

0.936 
(0.931–
0.941) 

0.934 
(0.929–
0.939) 

0.8397 
(0.832–
0.847) 

0.947 
(0.944–
0.952) 

0.890 
(0.884–
0.896) 

External 
Test Set         

RF 0.76 
(0.744–
0.778) 

0.987 
(0.984–
0.989) 

0.943 
(0.932–
0.953) 

0.935 
(0.929–
0.94) 

0.936 
(0.931–
0.941) 

0.842 
(0.829–
0.854) 

0.956 
(0.952–
0.96) 

0.907 
(0.901–
0.913) 

XGBoost 0.767 
(0.748–
0.784) 

0.980 
(0.977–
0.983) 

0.917 
(0.906–
0.930) 

0.936 
(0.930–
0.942) 

0.932 
(0.928–
0.938) 

0.836 
(0.824–
0.848) 

0.932 
(0.927–
0.937) 

0.877 
(0.871–
0.883) 

LightGBM 0.686 
(0.666–
0.704) 

0.976 
(0.972–
0.979) 

0.892 
(0.877–
0.907) 

0.915 
(0.909–
0.921) 

0.911 
(0.905–
0.916) 

0.776 
(0.762–
0.789) 

0.919 
(0.914–
0.924) 

0.840 
(0.833–
0.847) 

CatBoost 0.771 
(0.754–
0.790) 

0.982 
(0.979–
0.985) 

0.924 
(0.911–
0.936) 

0.936 
(0.931–
0.942) 

0.934 
(0.929–
0.939) 

0.840 
(0.827–
0.852) 

0.929 
(0.924–
0.934) 

0.875 
(0.868–
0.882) 

Logistic 
Regression 

0.339 
(0.321–
0.358) 

0.968 
(0.964–
0.972) 

0.755 
(0.725–
0.781) 

0.835 
(0.828–
0.842) 

0.827 
(0.819–
0.834) 

0.467 
(0.445–
0.487) 

0.793 
(0.785–
0.801) 

0.597 
(0.587–
0.607) 

ANN (MLP) 0.565 
(0.544–
0.585) 

0.937 
(0.932–
0.943) 

0.722 
(0.700–
0.744) 

0.881 
(0.874–
0.888) 

0.854 
(0.847–
0.861) 

0.634 
(0.618–
0.651) 

0.846 
(0.839–
0.853) 

0.707 
(0.698–
0.716) 

KNN 0.719 
(0.700–
0.738) 

0.988 
(0.985–
0.990) 

0.945 
(0.933–
0.955) 

0.924 
(0.918–
0.929) 

0.927 
(0.923–
0.933) 

0.817 
(0.803–
0.830) 

0.947 
(0.943–
0.951) 

0.905 
(0.899–
0.911) 

*Reduced model including only the top 10 predictors selected by SHAP analysis: bacterial count in urine, urinary 
leukocyte count, urinary nitrite test, patient age, leukocyte esterase activity in urine, HGB concentration, gender, 
lymphocyte count, urine density, and urinary erythrocyte count. 
 
Table 3A. Confusion matrix–derived performance metrics of the ML models, including sensitivity, specificity, PPV, and 
NPV. 
Feature Threshold 

Binarization 
Normalized 
SHAP 
Value 

Model-
Prioritized 
Score 
System 1 

Dual-
Optimization 
Score2 

SAFE-Score 
System 
(Sensitive 
Assessment for 
Exclusion)3 

Scientific 
Justification 

Bacteria 
Count 

>20 0.175 0.20 0.32 0.89 Major diagnostic 
marker for infection; 
emphasized 
clinically. 

Urine 
Leukocyte 
Count 

>25 0.157 0.18 0.22 0.05 Strongly correlates 
with infection; 
slightly boosted for 
sensitivity. 

Nitrite = 1 0.147 0.17 0.15 0.77 Positive nitrite is a 
direct indicator of 
gram-negative 
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bacterial activity. 
Age >65 0.118 0.15 0.23 0.42 Increased risk in 

elderly population 
(>65 years). 

Leucocyte 
Esterase 

>0 0.116 0.14 0.13 0.82 Biochemical indicator 
of leukocytes; 
moderate importance. 

HGB <12 0.085 0.10 0.12 0.71 Low HGB levels 
linked to increased 
infection 
susceptibility. 

Gender = 1 (Female) 0.062 0.08 0.04 0.06 Higher infection 
prevalence 
anatomically in 
females. 

LYM <1.5 0.051 0.06 0.1 0.65 Low lymphocyte 
count indicates 
immunosuppression 
risk. 

Density >1020 0.048 0.05 0.09 0.03 Higher urine density 
occasionally 
correlates with 
infection. 

Urine 
Erythrocyte 

>0 0.047 0.05 0.1 0.77 Presence may 
suggest urinary tract 
pathology but less 
specific. 

1. The first system was developed using model-derived, data-driven thresholds and weighting. 
2. The second system was designed to optimize both sensitivity and specificity, achieving balanced classification 
performance. 
3. The third system prioritized minimizing false negatives, emphasizing maximum sensitivity and PNV. 
 
Table 4. Performance metrics of the LDSS evaluated using both external test and validation datasets. 
A. Results from the external test set. 
Method Sensitivity Specificity PPV NPV PLR  NLR Accuracy F1 

Score 
ROC-
AUC 

PR-
AUC 

Model-
Prioritized 
Score 
System1 

55.94 
(53.87–
57.99) 

85.83 
(85.03–
86.59) 

53.31 
(51.29–
55.32) 

87.07 
(86.30–
87.81) 

3.95 
(3.69–
4.22) 

0.51 
(0.49–
0.54) 

79.1 
(78.31–
79.91) 

54.59 
(52.57–
56.60) 

70.88 
(67.58–
74.28) 

54.62 
(50.71–
57.71) 

Dual-
Optimization 
Score 
System2 

64.77 
(62.76–
66.72) 

76.62% 
(75.67–
77.55) 

44.49 
(42.79–
46.20) 

88.26 
(87.47–
89.01) 

2.77 
(2.47–
3.07) 

0.46 
 
(0.44–
0.49) 

73.96 
(73.09–
74.82) 

52.75 
(51.03–
54.46) 

70.70 
(68.70–
72.70) 

54.63 
(52.72–
56.72) 

SAFE-Score 
System3 

95.34 
(94.38–
96.14) 

20.29% 
(19.41–
21.20) 

25.70 
(24.77–
26.66) 

93.77 
(92.51–
94.83) 

1.20 
 
(1.03–
1.136) 

0.23 
(0.21–
0.25) 

37.13 
(36.18–
38.08) 

40.49 
(39.44–
41.55) 

57.81 
(57.81–
57.81) 

60.52 
(55.55–
65.58) 

1. TP = 1,248; TN = 6,620; FP = 1,093; FN = 983 
2. TP = 1,445; TN = 5,910; FP = 1,803; FN = 786 
3. TP = 2,127; TN = 1,565; FP = 6,148; FN = 104 
 
B. Results from the validation test set. 
Method Sensitivity Specificity PPV NPV PLR  NLR Accuracy F1 

Score 
ROC-
AUC 

PR-
AUC 

Model-
Prioritized 
Score 
System1 

57.95 
(53.00–
62.78) 

84.78 
(83.04–
86.41) 

46.47 
(43.09–
49.89) 

89.87 
(88.74–
90.85) 

3.81 
(3.32–
4.37) 

0.50 
(0.44–
0.56) 

79.80 
(78.06–
81.46) 

51.51 
(47.30–
55.37) 

71.31 
(68.60–
73.94) 

34.80 
(31.05–
38.61) 

Dual-
Optimization 
Score 
System2 

66.50 
(61.70–
71.07) 

76.48 
(74.44–
78.42) 

39.19 
(36.65–
41.80) 

90.92 
(89.71–
92.00) 

2.83 
(2.54–
3.15) 

0.44 
(0.38–
0.50) 

74.63 
(72.75–
76.43) 

49.36 
(45.86–
53.01) 

71.40 
(68.82–
73.94) 

32.35 
(29.00–
35.66) 

SAFE-Score 
System3 

94.87 
(92.26–
96.79) 

24.30 
(22.33–
26.36) 

22.22 
(21.63–
22.83) 

95.40 
(93.14–
96.95) 

1.25 
(1.21–
.1.30) 

0.21 
(0,14–
0,32) 

37.40 
(35,38–
39.46) 

36.08 
(33.46–
38.63) 

59.58 
(58.14–
61.03) 

22.03 
(20.05–
24.01) 

1. TP = 237; TN = 1,521; FP = 273; FN = 172 
2. TP = 272; TN = 1,372; FP = 422; FN = 137 
3. TP = 388; TN = 436; FP = 1,358; FN = 21 
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